
1 /*** Licensed under the Agpl: http://www.gnu.org/licenses/agpl-3.0.html ***/
2 /*** Author: http://namzezam.wikidot.com/ ***/
3 /*** Preamble: http://namzezam.wdfiles.com/local--files/start/rcoin.txt ***/
4 /*** Document's Structure:
5 ~Concept; ~Terminology&principles;~Tables&Legend;~Issuing-coins;~Coin's-Calculus;
6 ~Authentication;~code;~InProcess, where *** this is folded */
7 #ifndef defined_rcoin
8 #define defined_rcoin /*** ~Concept: rcoin - A coin of respect is ***
9 a time limited and equally re-distributed cyclic and communal coin.

10 It is daily and gradually losing its value, which is equally gained by the
11 community members. It is not money, nor an equivalent to money, but still a
12 medium of exchange, a credit for exchange and an inner community evaluation tool.
13 Use it to build up your economy while bringing more social justice into your
14 communities for, by advancing community members to get more than the others,
15 only as they are automatically sharing something of their gain with their
16 community members.
17 In simple words: When I have 10 rcoins for 50 yeas in a 4 people's
18 community, then in the next year I have only 9.80 rcoins and each member gets
19 additional 0.05 rcoin and so, as I earn more than you in your community, you,
20 as any other community's member, would get some equal share of it. So it make
21 those who can earn more to be more supported because the other would earn form
22 something of that. Additionally, when non of us spend rcoin even though the
23 rcoin nature is of losing value, only those of us having more would lose, as
24 the others are earning, but only until we got equal and hence it is useful for
25 saving communally and not in isolation, for our common interest.
26 Use case: A coffee-shop and a bakery are 2 divisions in an association
27 named here "ring". The ring buy chocolate and give it for rcoins to
28 the bakery and the bakery making from that a cake give it for coins of respect
29 to the coffee-shop, as the ring (not the coffee-shop) sells the cake+coffee in
30 money to an outer/tourist client or give it in rcoins to its
31 community members. When it is desired to become more open, such ring might
32 become comcomized: http://is-with.wikidot.com/6-points .
33 About the rate of exchange of the rcoin, we are not concerned here, as
34 we assume the exchange is not a direct but a substitutable one, meaning when
35 the exchange between currencies is done through the price of goods services
36 and holdings.
37 In parallel and just by papers: The rcoin can be used by having on the
38 paper the StartValue, LastDate, Lifetime and Id of the rcoin together with a
39 (trademaked) stump of the community and signatures of the hands it was
40 passing thorough:
41 SidaA(constant) SideB(variables)
42 A1.Group's Stamp. B1. Number of signatories coin
43 A2.LastDate B2. Signature of checker of sideB
44 A3.LifeTime B3. checking date
45 A4.StartValue B4. checker id
46 A5.CoinId B5++. Signatures and id/pin of the coin owners
47 A6.Signature of the issuer
48
49 The rcoin in allegory to compost pool:
50 A) The lost of value is like the release of the energy to the air
51 after being bad distributed as bobbles in the pool;
52 B) The energy, effective only in the pool, is as the coin in the
53 community and
54 C) The well distributed dividend is like injecting bottom-up some clean
55 instance (like cool water) for having the volume (or height) of the medium
56 be unchanged or somewhat controlled, as is the case in printing local
57 money.
58 Some other way to describe this system: the rcoin relates the exchanging of
59 (money/energy) to the time and the distribution, which makes some equivalents
60 to wave theories, where StartValue==amplitude/wave_max, LastDate==front_wave
61 and lifetime ==Wavelength (faster/lighter<-> slower/heavier).
62
63 The study of changes in a line value of the coin's holder versus in a plane
64 value of other members can be made in 3d and 1 colour, where X = CoinAge,
65 Y = CoinValue and Z = MembersCount or in 2d and 2 colours: one of the owner
66 and the other of members (and as X = CoinAge and Y= CoinValue).*/
67
68 /* The use of the composition is as a key for hashed picture. The composition is
69 a set of the pair of arguments: (diagonal, angle), together defining a sequence
70 of rectangles, such that:
71 Each rectangle is hashed separately in the crop defined by its arguments;
72 The composition is given separately (in a specific transaction) and all
73 rectangles in their order define together the reference to the
74 picture and reference could be hashed again for to be squeezed again

75 to a predefined size (used as an id);
76 Overlapping means hashing part of hidden rectangle with the shown one;
77 In each cycle the shortest rectangle on wall defines the highest of all others;
78 The first two zeros define the containing rectangle and each other zero define
79 changing direction until the pair of zeros that define the end after which
80 the next 2 pairs are of the original picture (first of the position of its
81 top left corner and the second of itself) and then terminate.
82 eg: (0,0)(0,0)(45,400) is the non-overflowing composition of only the
83 original being a square of which diagonal=400 pixels.*/
84
85 /*** ~Terminology&Principles for the rcoin: ***
86 * The Communication of threads between members is by asymmetric keys, where *
87 * threads, per each message n in an otr conversation, are defined so that *
88 * t[n]=(message[n],date,hash(t[n-1])), *
89 * hash(t[n]) is indexed by public_key(sender) and *
90 * t[0]=(id(receiver),date,x), where, as in hashcach K(hash(t[0]))==0, *
91 * K is defined by number of bits to be examined and x is a random. *
92 * The triplepin is the unique id of the member, which is given only in *
93 * community depended conditions, such as only after having some *
94 * recommenders for the uniqueness and the form of meeting with the member *
95 * and of the recommenders. *
96 * id(coin) is a unique&random int. *
97 * Payer is the previous Owner of a coin. *
98 * id(member)=hash(pic(member));Changeable + retrievable by triplepin(member)*
99 * The owner in payment should first see the payer then type the triplepin *

100 * by which the pic is retrieved, and only after the pic matches the payer, *
101 * that pic should be hashed and used/compared as an id. Hence such protocol*
102 * is based on a human recognition (and not on the one of machine). *
103 * Rand, used as a transaction id in the distributed log, is a unique and *
104 * random number, which is used as a receipt. It is produced by the Payer *
105 * distributing that record; So that in payment, when paying and after *
106 * proving ownership, the payer sign the new owner's id with the payer's *
107 * rand, to create her/his new distributed record(rans). *
108 *** ***/
109 /*** ~Tables&Legend, search: ?{?=>[?]}@ ***
110 * table{key=>[col(value1,value2)|col2(value3)] *
111 * }@db *
112 * related tables:category=<table1@db [connection] table2@db> *
113 * pic means compressed image *
114 * si[x](data) means detached-signed by x == (data,aep[x](hash(data))) *
115 * se[x](data) means symetrically encrypted data by the key of *
116 * ae[x](data) means asymetrically encrypted data by the public key of x *
117 * aep[x](data) means asymetrically encrypted data by the private key of x *
118 * *
119 * The data is stored in encrypted directory including this app in 2 db: *
120 * the My_db and the Op_db, where *
121 * the My_db is used by any member, *
122 * the Op_db is used by one or more operators being members. *
123 * (and hence when each member is also an operator, the app is a p2p app, *
124 * when being operator is rotated between members the app is democratic, *
125 * otherwise centric). *
126 * Here are the 3 data categories: *
127 * Movements = <Coins@op[id(coin)] Wallet@My [Rand]Log@op,CoinsId@op> *
128 * Values =<Worth@My [same-format]Treasury@op> *
129 * Identities =<Self@My[pic]Payers@My , Users@op[register]Profiles@op> *
130 * |---|*
131 * | category | @op | @My | using time |*
132 * |---------------|-----------------------|---------------|---------------|*
133 * |Movements |Coins , CoinsId, Log |Wallet | Payment |*
134 * |Values |Treasury |Worth | Calculation |*
135 * |Identities |Users, Profiles |Self, Payers | Authentication|*
136 * |---|*
137 * Any access/modification in sensitive and common area is resulted in *
138 * parallel notification to all other members or operators *
139 * note: in big communities it my be considered to use hierarchies of hubs *
140 * being operators for schemas of notification such as peer to op as peer to *
141 * next op etc. *
142 ||------------------------||------------------------||------------------------||
143 || table: || @Op || @My ||
144 ||Key=> || || ||
145 ||[col1(value1,value2)| || || ||
146 ||col2(value3)] || || ||
147 ||------------------------||------------------------||------------------------||
148 || Movements in || Coins: 2blob of all || ||

149 || recycling || valid and expired || ||
150 || || Hash(Id(coin)) || ||
151 ||------------------------||------------------------||------------------------||
152 || Movements in || CoinsID:hash(id(coin))<id(coin)> ||
153 || Payment || =>[(Rand,N)] || Wallet:hash(id(coin))=>||
154 || || ---- ||[(Rand, RandPrev, Coin, ||
155 || || Log:hash(Rand)=> <Rand> id(payer), ||
156 || ||[(Nhash(id(Coin)), || pub-key(id(payer)))] ||
157 || ||si[Payer](Rand, || ||
158 || ||id(Owner)), || ||
159 || ||Chain)] || ||
160 ||------------------------||------------------------||------------------------||
161 || Values in Calculation ||Treasury:LastDate=> <*> Worth:LastDate=> ||
162 || || [CoinLifetime(|| [CoinLifetime(||
163 || || SumStartValue, || SumStartValue, ||
164 || || TheirAmount)|...|] || TheirAmount...)|...|] ||
165 ||------------------------||------------------------||------------------------||
166 || Identities in || <register> <triplepin> <pic> ||
167 || Authentication || || ||
168 || ||Users:hash(triplepin)=> ||Payers:hash(triplepin)=>|
169 || ||[(register=ALL(hash(||[(id=hash(pic),pubkey)]||
170 || ||pic(member)),,))] || ---- ||
171 || || ---- ||Self:CreatingDate => ||
172 || ||Profiles:hash(register)=>||[(pic of mine)] ||
173 || ||[(personal info in common|| ||
174 || || pubkey, id=hash(pic,,)] || ||
175 ||------------------------||-------------------------||-----------------------||
176 Movements = <Coins@op[id(coin)] Wallet@My [Rand]Log@op,CoinsId@op>
177 Coins@op = the Movements of all coins starts and ends here. It consists of
178 One table having one record having 2 blob: 1 of all Hash(Id(coin))
179 of valid coins (parallel to CoinsId@op)and the other of those
180 which are expired, to be used
181 for maintenance of their uniqueness before issuing new coins.
182 Q?? should n't Coins@op have id LastDate Lifetime of coin for no
183 collusion and keeping coherence without having StartValue??
184 Wallet@My={hash(id(coin))=>[(Rand,RandPrev,coin,id(payer),pub-key(id(payer)))]
185 }@My (of this member's coins), where
186 only by id(coin) the access to the value of the coin is given!
187 CoinsId@op={hash(id(coin))=>[(Rand,N])
188 }@op (of all coins), Rand is the last Rand of the translation made
189 with that coin for to insure no twice payment and, used for the prove
190 of continuity, N is increased by 1 with each transaction of the coin.
191 Log@op={hash(Rand)=>[(Nhash(id(Coin)),si[Payer](Rand,id(Owner)),Chain)],
192 }@op (of all coins), where Chain=(hash(ChianPrev),hash(RandPrev,Id(Owner)))
193 and the hash(pic)==id(user) and a unique triplepin is used as a key for all
194 such pic, making each pic able to be changed Not as in the biometric info!
195 The Prove of ownership by id(coin), where op has in CoinsId@op Rand equals
196 the Rand the owners pull from Log@op by her/his Wallet@My:
197 the Rand or RandPrev has the id(coin) and the owner verifies the signature
198 and produces both: the Chain and the hash(Id(Owner) of the ChianPrev,
199 which is the Chain in RandPrev.
200 N is the number of hashes implemented on itself beginning in id(coin)
201 and ending in Nhash , for creating a prove of continuity. So, having the
202 id(coin) and N you can create the Nhash of the N,
203 where Nhash(N) =hash(Nhash(N++)) .
204 Protocol of Payment: payer send pub-enc to all op
205 1) prove ownership, 2) new transaction and 3) new Rand and N to replace the one
206 in Coins@op and of which hash indexes the transaction as a new record in Log@op.
207 Each op before creating the record verifies the transaction and only on success
208 sends success-signal to other op and only after all op agree on success they
209 create the transaction as a new record in Log@op.
210 The verification is successful only when Nhash all the way from the id(coin) and
211 until N is coherent and N-1 and si[payer] together with hash(Id(Owner,RandPrev)
212 (included in Chain) on RandPrev are reproduced and coherent.
213 Protocol of Issuing-coins: see ~Issuing-coins.
214
215 Values=<Worth@My [same-format]Treasury@op|...|>
216 Treasury@op={LastDate=>[CoinLifetime(SumStartValue,TheirAmount)]|...|,
217 }@op (of all coins),
218 where SumStartValue = Sum(CoinStartValue) is only a statistical
219 info (separated from their id) of the coins. It can be used for
220 liquidizing by issuing some rcoins as rcoin-to-currency_X, of which
221 dividend is paid in currency_X by using the additional Treasury as
222 Treasury_X. e.g. Treasury_dollar for dividending in dollars. it can

223 also be integrated with liquidizing to rcoin of other held/holding
224 rings or to money given to exchange by newcomers or members.
225 Worth@My={(is_mine)LastDate=>
226 [CoinLifetime(SumStartValue,TheirAmount,
227 "-"SumStartValue/CoinLifetime,
228 "+"SumStartValue/(CoinLifetime*MembersAmount) ,
229 List(StartValue,id(coin)),
230 SumValue)]|...|,
231 }@My (of this member's coins), where
232 SumValue = SumStartValue
233 -((SumStartValue *(TodayDate+Lifetime-LastDate))/Lifetime)
234 is the only the one which is daily changing.
235 Protocol of calculation: see ~Coin's-Calculus.
236
237 Identities=<Self@My[pic]Payers@My, Users@op[register]Profiles@op>
238 Self@My= {date-of-creation =>[(pic of mine)],
239 }@My (of this member)
240 Payers@My={hash(triplepin)=>[(id=hash(pic),pubkey)],
241 }@My (of authenticated members by this member),
242 Used as in WebOfTrust, such that the payer sends
243 enc(hash(triple),id,pic) and these 3 conditions has been met:
244 1. id = hash(pic),
245 2. pic match the payer being recognized by the payee and
246 3. triplepin of the payer in Users@op+Profile@op is verified.
247 Users@op= {hash(triplepin) =>[(register=ALL(hash(pic(member)),,))],
248 }@op (of all members), payers ae to be verified.
249 Profiles@op={hash(register)=>[(personal info in common: pubkey, id=hash(pic,,)],
250 }@op (of all members)
251 Protocol of Authentication (also see ~Authentication): The payer delivers both:
252 triplepin and pic, by typing and handing and/or by sending the information
253 encrypted with pubkey of the seller (to become owner of the coin). Only after
254 the seller recognize the payer in the pic, the seller hashes the pic and uses
255 the triplepin in Payers@My or Users@op+Profiles@op to verify by matching the
256 hash=id.
257 ***/
258 /*** ~Issuing-coins: Movements = <Coins@op[id(coin)] Wallet@My [Rand]Log@op, CoinsId@op> **
259 before issuing new coins in Coins@op by creating or modifying one record in Treasury@op, their

StartValue and ThierAmount should be considered in distributing them to all
Values=@My,Wallet@My, Log@op. When issuing new coins we should care for making no collusion of
the hash and for unique random. In issuing we will add to values after grouping amount of items
in groups of StartValue.

260
261 "printing" coins of respect can be done when issuing new cycle of old coin or creating new cycle

as the ring creates its coins to projects its (new) Gini, by both:
262
263 A) maintaining its social obligation amounted to Mini guaranteeing minimal amount of coins

per each of its members and
264 B) by delivering an additional equal dividend D to each of its members,
265
266 such that
267
268 -1 <= min_Injustice <= Gini - Justice <= max_Injustice <= 1 and
269 0 <= min_stress <= Gini / Justice <= max_stress,
270
271 where
272
273 Gini is the ratio of the areas on the Lorenz curve diagram used as a measurement for

inequality in the ring, as 0<= Gini<=1,
274 X is the number of ring's members,
275 Y is the amount of ring's coins,
276 D is an equal Dividend per ring's member, as D*X is added to Y per each round,
277 A is the Average of coins per ring's member, as A=Y/X,
278 Mini the Minimal amount of coins guaranteed per each of the ring's members,
279 Justice = Mini/A, Justice as in ring's social Justice, as 0<=Justice<=1, since Mini<=A.
280
281 Notes:
282
283 The rings "printing" coins is to be done with specific coins's-lifetime, D and Mini, using

limitation such as min_Injustice, max_Injustice, min_stress, or max_Stress to response to
specific changes of the Justice and Gini in the ring, for to meet some policy, which are to be
made automatically and/or directly under decision made by people.

284 Even when the rcoin are only in the ring tradable, still the tradability out of that ring is
optional by peer coin, which is the value of accountability-and-ownership of one peer owner, as
peer coin is measured by rcoins of other ring, money or money's equivalent.

285
286 ****/
287 /*** ~Coin's-Calculus: Values=<Worth@My [same-format]Treasury@op,,>
288 : CoinAge, starting in zero,
289 is the time in days for the lifetime of that coin, where in each day
290 CoinAge is increased by one as long as CoinAge is smaller than CoinLifetime
291 and where MembersCount is the number of members in the community issuing
292 the coin, such that
293 CoinValue = CoinStartValue * (1- CoinAge/CoinLifetime),
294 MemberDividend = (CoinStartValue/MembersCount)*(CoinAge++/CoinLifetime)
295 and CoinAge++, so that daily CoinValue -= OwnerDailyLost, where
296 OwnerDailyLost = CoinStartValue / CoinLifetime and
297 MemberDailyEarning = OwnerDailyLost / MembersCount.
298
299 The functions .CoinValue running on <Worth@My ,Treasury@op> to reduce
300 and add value are used for to update the member Wallet values on a daily bases.
301
302 Periodically, when the accumulated MemberDividend becomes higher enough there
303 should be a new issuing of such coins. Issuing of such coins should be
304 triggered by collecting the Dividend from all members and can be depended on
305 some regulations such as of big Dividend per member and/or time period
306 defined by default or some decisions.
307 */
308 /*** ~Authentication: Identities=<Self@My[pic]Payers@My, Users@op[register]Profiles@op> ***
309 Hashed Pic Id Authentication as a simple practice for member's
310 authentication (from http://namzezam.wikidot.com/blog:5):
311 In initiation, The members exchange an encrypted asymmetrically pic
312 (as the pic of payer is added to Payers@My of the payee) and
313 compressed image showing only the member as that image is indexed by its
314 fingerprint or by other token (e.g. triplepin), where the hash of the image
315 is used as the id of the member and the (12 hex-digits) hash of that id is
316 used as the fingerprint of that image.
317 In authentication, the members are able to see each other, in physical
318 presence or via internet in a real-time visual and dynamic communication, and
319 the identifying member checks if both conditions are met:
320 1) the seen member is the one being shown in the image and
321 2) the hash of that image is identical to the id of the seen member.
322 Not as in the biometric info, per each user, the id(member)=hash(pic) can
323 be changed, whereas the triplepin(user) remains unchangeable as the triplepin
324 of self is optionally shared in transaction.
325 It is used when pic is image showing the member for authentication,
326 in which the members are able to see each other, in physical
327 presence or via internet in a real time visual and dynamic
328 communication, where the identifying member checks if both
329 conditions are met:
330 1) the seen member is the one being shown in the image and
331 2) the hash of that image is identical to the id of the seen member.
332 */
333 /*** ~code.. ***/
334 int rcoin_New(void); /** as a Constructor */
335 int rcoin_Escape(void);/** as a C++ Destructor*/
336 int rcoin_open(void); /**Opening db in the (encrypted) directory of the app.*/
337 int rcoin_sql(char *); /**Executing SQL statement*/
338 typedef struct coin_info_type {/** 16bytes constant values per coin*/
339 int StartValue, /** Its 10 LSB (Least significant bits) indicates the
340 minor monetary unit (like cent), where the other bits indicates the major
341 monetary unit (as coin), such that the number of coins represented by
342 StartValue is the StartValue's major unit equal (StartValue/1024) or
343 (StartValue>>10), as the StartValue's minor unit (like cent) equals
344 (StartValue&0x3ff).*/
345 LastDate, /** In days elapsed since Epoch, such that
346 int CoinAge = (((time_t)time(NULL)) / 86400)+Lifetime-LastDate; */
347 Lifetime, /** In days from BirthDate until LastDate, where
348 BirthDate=LastDate-Lifetime, as 0=<CoinAge<Lifetime. Should be reconsidered
349 for 'printing' coins parameters for effecting Gini and Justice. Note that 25
350 years (or 9125 days) Lifetime is equivalent to 4% inflation and is used as
351 default.*/
352 Id; /** unique&random, id of coin : unique & random of which
353 sid (time, noise hahs(news) and result is unique in the db. in it there is
354 no info(coin) the info encrypted in the Wallet of the owner and in another
355 table able to be restored.*/
356 } coin_info_type; /**...constant parameters of the coin used For The Calculus of the Coin*/
357 #include <\
358 time.h> /** as the coin's value are time dependent.

359 int daysSinceEpoch=(((time_t)time(NULL))/86400);*/
360 float rcoin_CoinValue(coin_info_type *); /** */
361 float rcoin_MemberDividend(coin_info_type *); /** */
362 typedef struct coin_calc_type{
363 int LastCalculatedDate,TodayDate;// =(((time_t)time(NULL)) / 86400);
364 //int Age;// CoinAge = r.calc.TodayDate+r.calc.info->Lifetime-r.calc.info->LastDate;
365 //(((time_t)time(NULL)) / 86400)+Lifetime-LastDate
366 int MembersAmount;
367 float (*CoinValue)(coin_info_type *);
368 float (*MemberDividend)(coin_info_type *);
369 }coin_calc_type;
370 /***/
371 typedef struct rcoin_type{ /**as a c++ class rcoin, but initialized as c file global:*/
372 int (*Escape)(void); /** rcoin_Escape Destructor*/
373 int (*New)(void); /** rcoin_New Constructor*/
374 char **man;
375 char member_is_operator;/** sqlile members:*/
376 sqlite3 *My_db,*Op_db; /** using only these db*/
377 char *Err; /** error msg by sqlite*/
378 int (*open)(void); /** rcoin_open*/
379 int (*sql)(char *); /** rcoin_sql*/
380 /***/
381 coin_calc_type calc; /** rcoin calculus:*/
382 }rcoin_type;
383 #endif /** end of defined_rcoin*/
384 /******--------- ~InProcess: to sort out from here----------******/
385 /** The format of TablesOfCoins is,
386 table-name = Coins(is_mine)LastDate,
387 key = CoinStartValue,
388 column-name = CoinLifetime and
389 Value = blob of a sequence of 4 bytes int Id(coin), where
390 Amount(Field) = sizeof(Field)/4;
391 CoinValue = StartValue -((StartValue * CoinAge)/Lifetime));
392 CoinAge = TodayDate + Lifetime - LastDate;
393 and where the format of their TableOfValues is
394 *//***[no need for Treasury in format TablesOfCoins in My_db, but instead of
395 Treasury in op.db in format TableOfValues having no coins of is_mine==1. *//**???
396 key = (is_mine)LastDate
397 column-name = CoinLifetime
398 Value = (+or-)daliychange, currentvalue,
399 where CoinSStartValue
400 = SumAll(CoinStartValue(inTableOfValues)
401 *Amount(FieldInTableOfValues)
402 as the sum in each record and then of
403 all records gives one number value.
404
405
406 Op_db has 3 tables
407 (used in Common by any, between 1 and all, members being operators) :
408 Log: (at least 2 per each coin)
409 {hash(Rand)=>(id(Owner),si[Payer](Rand,id(Owner)),Chain)}
410 where Chain=hash(ChianPrev,RandPrev,Id(coin))
411 Users:(of all members)
412 {hash(triplepin) =>(register=ALL(hash(pic(member)),,))}
413 Profiles:(of all members){hash(register)=>(private info in common)}
414
415
416
417 My_db has 4 + n CoinsTables (used in Private by each member) :
418
419 Self(of member's Pic): {date-of-creation =>pic}
420 the blobs of pic which are/were used for id of the member.
421
422 Authen(of authenticated members):{hash(pic)=>triplepin}.
423 as in WOT used to get the info of the payer
424 in Op_db by users and profiles.
425
426 Wallet(of member's coins): {hash(id(coin))=>(Rand,RandPrev,coin)}
427 used in Log@Op_db for proving ownership
428 and its continuity over the coin, by the ability
429 to reproduce the ChainPrev(RandPrev).
430
431 Values(of all coins): {format of TableOfValues,
432 where is_mine=1 and is_mine=0}

433 used for to evaluate coins of the member, each blob
434 is of the table made in updating per day.
435 The updating is to run in
436 1. exchange, as member pay or paid, only for
437 the coins being exchanged
438 2. (TodayDate==LastDate) only Table of that Lastdate and
439 3. changing the MembersAmount (all Treasury
440 of which is_mine==0).
441 When updating MemberDailyEarning by the coins of others,
442 it is only an estimation activated on issuing new such coins,
443 where the issuing could be monthly made,
444 whereas the updates in the wallet are daily made.
445 -= OwnerDailyLost *amount-of-such-coins
446 += MemberDailyEarning*amountof suchcoins.
447 table-name=OwnerDailyLost=
448 CoinStartValue/CoinLifetime: key(id),CoinValue, LastDate,
449 to finish the Values so that the Coinvalue is the -change memeberdedens..
450 and the const change ...
451 table-name=MemberDailyEarning:CoinValue, LastDate
452
453 Treasury: (of all coins,n tables in format of TablesOfCoins, has
454 member's coin, when is_mine==1 and when the Treasury of others, as is_mine==0,
455 could be made a virtual one): Do need this? community depended: default yes,
456 as this provides certainty.and if so should it have (id(coin),id(owner) or
457 only id(coin)?
458 Treasury, used for updating the Wallet and are in the TablesOfCoins format.
459 (is_mine)->LastDate->CoinStartValue->CoinLifetime->Id(coin)
460 If the coins are of others, then is_mine=0, otherwise is_mine=1.
461
462
463 *//**
464
465 Definitions, where ae[member](record) is the default way to distribute a
466 record for the 4 db in the encrypted directly including this app the 2
467 Privately db per each member and 2 Commonly by member/s acting as operator/s
468 (at least 1 in comunity), where any access/modification is resulted in
469 parallel notification to all other and where
470 pic means compressed image,
471 si[x](data) means signed by x == (data,aep[x](hash(data))),
472 se[x](data) means symetrically encrypted data by the key of x,
473 ae[x](data) means asymetrically encrypted data by the public key of x.
474 aep[x](data) means asymetrically encrypted data by the private key of x:
475 ---se[member]PrivatelyCoins-db ---(of any coin in Treasury and in others of
476 members'coin)
477 1.Treasury: {id(coin)=>coin} <-of any-other, for adding value
478 by.MemberDividend)
479 2.Treasur: {id(coin)=>coin} <-of the-member, for reducing value
480 by .CoinValue)
481 3.Wallet: {CoinValue=>coin} <-of the-member, daily updated)
482 ---se[member]PrivatelyWho-db ---(of self and her/his customers)
483 1.Self: {id(pic)=> pic} <-of the-member,id(pic) as in register, id(user)==hash(pic) <- Not

as in the biometric info, per each user, the id(user)=hash(pic) can be changed, whereas the
triplepin(user) remains unchangeable as the triplepin of self is shared in trunsaction)

484 2. Authen: {hash(pic)=>12digittriplepin} <-of those who pay to the member)
485 ----se[member]CommonlyCoin-db: (of-any coin)----
486 1.Proves: ae[member]{hash(id(coin))=>se[Owner](receipt[n])} of all coins<-)
487 2. Log: ae[member]{hash(receipt[n])=>id(Payer),si[Payer](id(Owner))} <-)
488 ----se[member]CommonlyWho-db: (of-any member)----
489 1.Users: ae[member]{hash(triplepin) =>(register=ALL(hash(pic),,))}<- order as in Self)
490 2. Profiles: ae[member]{hash(register)=>(private info in common)}
491 =================
492 ???1.Users: ae[member]{hash(id(member))=>triplepin,ae[Owner](rand[n],hash(rand[n-1]))}
493 ????2. Profiles: ae[member]{{hash(rand[n])=>info(user, patrly ae[user])}
494 =====================
495 --ae[member]PrivatelyCoins-db----
496 1.Treasury: {id(coin)=>coin} <-of any-other, for adding value by.MemberDividend)
497 2.Treasur: {id(coin)=>coin} <-of the-member, for reducing value by .CoinValue)
498 3.Wallet: {id(coin)=>coin}.<-of the-member, daily updated)
499 ---se[member]PrivatelyWho-db ---
500 1.MemberPic: table for some pic of self sorted by id(pic)
501 for that each user can have meny id(user),
502 where all id(user) are able to identified by payee,
503 assuming that the ownership defined by the user id in the log is a valued property of the

payer and as the triplepin is still unique

504 2.Payers: ae[member]{hash(12digittriplepin)=>compressed-pic},
505 of self and her/his customers (potentially of all users),
506 and as each user can transfer her/his data in the transaction,
507 demand deleting it after identification and can change the pic added to profile,
508 where each user has different triplepin and id(user)==hash(pic,triplepin,id(pic)) and
509 where the pic is used by the payee to identify the payer in the transaction for achieving

unique authentication.
510
511 --ae[member]CommonlyCoins-db---
512 1.Proves: ae[member]{hash(id(coin))=>ae[owner](receipt[n])},
513 of all coins and as only receipt of last transaction is kept,
514 where receipt[n] = (random[n] signed by Owner,hash(receipt[n-1]))
515 and for to prevent collision in creation of new coins, as the hash(id(coin)) is sent to all

users, each user cheak if exist, so when exists reahsing the hash.
516 2. Log: ae[member]{{hash(receipt[n])=>id(Payer),si[payer](id(Owner))}
517 --ae[member]CommonlyWho-db-----
518 3.Users: ae[member]{hash(id(member))=>triplepin,ae[Owner](rand[n],hash(rand[n-1]))}
519 4. Profiles: ae[member]{{hash(rand[n])=>info(user, patrly ae[user])}
520 */

